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corresponding more direct method to compute the natural frequencies in exterior
scattering problems.0

To partially answer this question a geometric ray optics method, which because
of its asymptotic nature is particularly suited to compute the higher order
resonances, is described.

/The idea is, in general terms, to consider a smooth, convex object with a sur-
face impedance boundary condition. Complex resonant frequencies are computed
from closed path integrals over the surface. It is hypothesized that the
paths ri represent surface geodesics whose definition includes electromagnetic
inertial effects.

The electrical path length depends upon the lochl principal radii of curvature
of the surface. The primary result of this work is that a generalized WKB
method can be employed to account for both the curvature and impedance boundary
conditions.

I, .7 lv'

A,



Unclasified
SKyI7YC.ASSPICATION OF THIS PAGE (W0n Dora Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSREOTDCMNAINPG BEFORE COMPLETING FORM

-T Ifl,7 MItM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFOSR. TR- It 9 - 1 ,0 5
4. TITLE (#Ad Subtitle) S. TYPE OF REPORT & PERIOO COVERED

Interim

A GEOMETRIC THEORY OF NATURAL OSCILLATION 10/1/78 .9/30/72
FREQUENCIES IN EXTERIOR SCATTERING PROBLEMS 6. PERFORMING OG. IMPORT NUMic0

7. AUTNOR(s) 6. CONTRACT OR GRANT NUMIIr(e)

Allen Q. Howard, Jr. AFOSR-78-3727

9. PERFORMING ORGANIZATION NAME AND AooRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Engineering Experiment Station, & ,
Uaivers4y-f Arizona -41- ". .. // r34
Tucson, A*49 85721

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/ 30 September 1979
Air Force Systems Command, USAF 13. NUMBER OF PAGES

Boiling Air Force Base. D. C. 20332 Ts. -Mtnt 1 P
I4. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) IS. SECURITY CLASS. (ol this report)

UnclassifiedISo. DECLASSJFICATION/OWNGRAOING

SCHEDULE

16. OISTRISUTION STATEMENT (of this Report)

Research sponsored by Air Force Office of Scientific Research, Air Force
Systems Command, USAF, under Grant No. AFOSR-78-3727. The United States
Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation hereon.

17. DISTRISUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

Approved for public release;

distribution unlimited.

III. SUPPLEMENTARY NOTES

12. KEY WOROS (Continue on reverse side it necessary and identify by block number)

Natural Frequencies
Asymptotic Methods
Ray Orbits
External Scattering
Target Identification

% ABSTRACT (Continue on reverse side It necessary and identify by block numbr)

The representation of the transient electromagnetic response of finite size,

smooth, perfectly conducting objects in terms of a complex exponential series
is the central ingredient of the singularity expansion method (SEM). The
exponential terms correspond to the complex natural frequencies associated
with the object geometry. That such a simple series can predict the force
free response of complicated objects begs the question 9 is there not a

FORM
DO 1473 EDITION OF I NOVISSSORSOLETE y~~~

I.



A GEOMETRIC THEORY oFATPAL ILLATION FREQUENCIES
IN EXTERIOR CATTERING PROBLEMS. -

| for
Department of the Air Force

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Bolling Air Force Base

Washington, D. C. 20332
J

Grant NoJ AFdSR--78-3727)FJ

3 EP 79'

Prepared by

ia;., s

A. D. L ..
r$chnical 1.7' . J.'cor

'Department of Electrical Engineering
THE UNIVERSITY OF ARIZONAITucson, Arizona 85721

.,.-,

O~i g~4



TABLE OF CONTENTS

ABSTRACT .. .. ......................... iv

INTRODUCTION................... . . ... . .. .. .. .. .. .....

THEORY. .. ............................ 2

APPLICATION TO ASPHERE. .. .................. 11

*DISCUSSIONS AIM RECOMMF.DATIONS. .. .............. 18

REFERENCES .. .. ........................ 20

APPENDIX A.. .. ........................ 22

cAcces:zion For

1 t



I

ABSTRACT

The representation of the transient electromagnetic response

of finite size, smooth, perfectly conducting objects in terms of a

complex exponential series is the central ingredient of the singular-

ity expansion method (SEK). The exponential terms correspond to che

complex natural frequencies associated with the object geometry.

That such a simple series can predict the force free response of

complicated objects begs the question "is there not a corresponding

more direct method to compute the natural frequencies in exterior

scattering problems."

To partially answer this question a geometric ray optics

method, which because of its asymptotic nature is particularly suited

to compute the higher order resonances, is described.

The idea is, in general terms, to consider a smooth, convex

object with a surface impedance boundary condition. Complex resonant

frequencies are computed from closed path integrals over the surface.

It is hypothesized that the paths ri represent surface geodesics

whose definition includes electromagnetic inertial effects.

The electrical path length depends upon the local principal

radii of curvature of the surface. The primary result of this work

is that a generalized WKB method can be employed to account for both

the curvature and impedance boundary conditions.

iv

Z4



The method when applied to a sphere is shown to reduice to

the well known uniform asymptotic expansion of the spherical liankel

functions. In this example a comparison of the asymptotic and

I exact results for the natural oscillation frequencies of a sphere

-is given.

4*v



* 4.

Introduction

The complex poles in the s domain which determine the complex

resonant frequencies of finite convex scattering geometrics have been

determined numerically [1). From such studies it has been observed

that the complex frequencies or pole locations depend only upon the

scattering obstacle and not upon the incident waveform. In ref-

erence [1], Tesche observed that the approximate distance between

adjacent poles in the s plane have the property that

Im ( A s) ;= T C /lL ( )

where L is a characteristic length of the body and c is the speed of

light. Physically, one expects that the exterior frequencies must

be complex to account for ray divergence and bending losses.

These observations suggest that the exterior resonance phenom-

enon is a form of damped periodic motion. Similar systems are

cavity resonance and Bohr orbits. Thus (1) can be considered to be

related to a phase reinforcement condition which requires that closed

ray paths around the object corresponding to resonant frequencies

effectively contain an integer number of wavelengths. This, of

course, is the principle of Bohr orbits of the Old Quantum Theory (2].

An asymptotic geometric theory should apply to electrically

large objects and improve as the object dmensions, scaled in wave-

lengths, or mode index n becomes large. The quasi-periodic nature of

observed transient responses from such objects suggest the candidate

theories of transverse resonances [3], the Wentzel-Kramers-Brillouin or

1
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WKB approximation (4], and a suitable modification of the Bohr-

[ So-erfeld-Wilson condition of the Old Quantum Theory (2].

Theory

To motivate the development to follow, it is useful to out-

I line the elegant geometric treatment of interior resonances of

Keller and Rubinow [5]. Many of their basic ideas and topological

concepts, as well as their comparative accuracy, can be expected to

carry over to the more difficult external problem. Their idea is

to solve the scalar wave equation

(V + kzn2 ) i(x) = 0 (2)

on the interior of a smooth closed surface S where 4 is assumed to

satisfy Neumann or Dirichlet conditions on S. If we assume a

solution of the form

(x) - A ()ikoS(0 ) (3)

it follows from substituting (3) into (2) that the phase function

S(w) and the amplitude function A(x) satisfy the eikonal and trans-

port equations

(V S)2 . n2  (4)

72 S + 2S - n A . (5)

If the local ray trajectory has a unit tangent vector then the local

T wave vector k is given by
a.

=k 7s , V s n() (6)
0

2
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The resonance condition is

k & dl - 27r (n + m/4 + b/2) (7)

where n, m, and b are integers. In particular, m and b are the number

of times the ray hits the caustic or boundary respectively. (This is

for Dirichlet conditions on S; for the Neumann condition, b is

identically zero.) Condition (7) holds for every independent closed

curve on the covering space. Keller and Rubinow consider the example

of a resonant ray inside a perfectly conducting circular surface of

radius a. Using geometric optics, one finds that there exists a

caustic surface of radius a < a as shown in Figure 1.
0

Caustic
-" /(radius a0)

// %4., -ao.< Boundary
(radius a)

I0

Figure 1. Interior Resonant Ray
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If one accounts for the number of ray congruencies, and the

independent closed curves, by successive elimination of the parameters

such as the caustic radius a in Figure 1, the desired wave number ko

and hence the complex frequency s can be obtained.

The independent paths on the covering cannot be deformed into

each other without crossing a singularity of the field. Thus,

Equation (7) is actually a residue theorem in disguise. This charac.

terization of the resonance condition can be used directly in target

discrimination as we will discuss in conclusion of the paper.

In the example of Figure 1 there are two independent paths

in the covering labeled 1 and 2 in Figure 2.

Caustic ---- Ray - Boundary
(radius a0 ) (radius a)

I: 5'2.

A
a

k 27ra 27m (8) ko(2 va2-a2 - 2a cos- (A)) (9)
0 000 0

- 2,(n + 3/4)

Figure 2. The Independent Paths

4
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Eliminate a from Equations (8) and 9) and solve for ka.
0

The resulting expression for ka is an asymptotic formula for j

the nth zero of the Bessel function J.

The following table from Reference 2 compares approximate

and exact zeros.

Table 1. Interior Resonance Comparison

m n Approximate Exact Fractional Error

0 1 2.356 2.405 0.0204

0 2 5.498 5.520 0.0040

0 3 8.639 3.654 0.0017

0 4 11.781 11.792 0.0009

1 1 3.795 3.802 0.0097

1 2 6.997 7.016 0.0027

1 3 10.161 10.173 0.0012

1 4 13.311 13.324 0.0010

As can be seen, the asymptotic solution is surprisingly accurate

even for the lowest order modes.

In the exterior problem the situation becomes more complicated.

The role of the caustic and the boundary are interchanged and the ray

paths become curved. In Figure 3, evanescent rays are shown trapped

between the surface S and their respective caustics. When curvature is

encountered, some of the energy radiates away from the object.

5
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Shado Caustic
Suae SSurface

Lit Side

Figure 3. Exterior Resonance Ray Orbits

It is easy to appreciate that the corresponding eigenvalues

in the exterior problem are complex. The imaginary part of the eigen-

frequencies sn associated with scalar transient f(t) are associated

with the object circumference. Let f(t) be written as the inverse

Laplace transform of F(s).

c+i==
i eSt

f(t) - fc~i=F(s) e ds

Let sn be a simple pole of F(s) in the left half plane of the s

domain, i.e.,

s + W < 0...... ..
n n n n

4bT 6
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I
The real part an is physically associated with radiation damping and

I ray tube spreading upon reflection from the convex surface. The idea

is demonstrated in Figure 4.

I

Surface

Lit Side".x/ ,)

a'Drk Side "V"

Figure 4. Heuristic Definition of Caustic

The caustic surface for the external problem can heuristically

be defined as the locus where the local wave front tangential

velocity exceeds that vacuum velocity c. The energy must, therefore,

detach from the packet. This phenomenon is associated with the inertia

of the electromagnetic field: there is a cause and effect relation-

ship between local spatial curvature and electromagnetic energy

density.

Such a relationship was obtained by Einstein in his theory

of General Relativity in the form of a conservation law involving the

V,



covariant derivative of the electromagnetic energy momentum tensor

T)V The mathematical statement is given by

D/3x (VS TX )  ") r Pv =0 (10)

where g 1 is the space time metric tensor and g - det (gl'v) [6,7].

It has been shown by Choudhary and Felsen [8] that geometric

ray tracing in evanescent regions is further complicated by the non-

congruence of the phase propagation paths of simple geometric theory

and the power flow trajectories.

To obtain a geometric theory for the exterior eigenfrequencies,

we postulate that the periodic damped motion be described by a

suitable modification of the Bohr-Sommerfeld quantization rule for the

action integral of the "Old Quantum Theory," [2,9,10].

fPi dqi = nih , i = 1,2,3..., ni = 1,2,3. (11)

Here, pit qi are the canonically conjugate momenta and coordinates as

defined by the equations of motion in the Hamiltonian formalism. An

important point is that for each independent momentum coordinate set

(Pip qi 'i - 1,2,... there is a corresponding quantization or

resonance condition. In the classical physics problem of determining

the resonant frequencies of an electromagnetic cavity oscillator, Keller

and Rubinow [3] showed that Equation (7) can be used to compute the

associated eigenvalue spectrum.

We want to show that analogous independent closed curves

P p - 1,2,3... can also be determined and that the independent

8
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momentum-coordinate defined action integrals for the exterior problem

determine the eigenvalue spectrum.

The Bohr-Sommerfeld rule was developed for the determination

of electron orbits and associated energy eigenvalues of atomic physics.

However, the wave nature of particles is manifest according to

de Broglie's relation that a particle with momentum p has associated

wave properties with wavelength X [7]. This relation is

X h/p or k 27P (12)
h

Thus, the wavenumber momentum relation corresponding to (1) is

k i dqi 2Trni i - 1,2,3... (13)

r i  ni = 0,1,2,3...

We postulate that (13) with proper interpretation determines asymptot-

ically the complex resonant frequencies of an exterior scatterer. In

the original development of the Old Quantum Theory, the correspondence

principle was used to bridge the gap between classical and quantum

mechanical domains. Then, the classical limit is approached as the

integer ni in Equation (11) becomes large. Similarly, the asymptotic

optical limit for electromagnetic analogue in Equation (13) is

approached when the corresponding ni becomes large. To apply these

concepts we first develop the relevant scattering problem.

Our boundary value problem is as follows. We wish to solve

the scalar wave Equation (2) for P(x) in the region exterior to the

--
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surface S0 as shown in Figure 3. The boundary conditions on x)

is an impedance condition of the form

(n + q ) i- 0 (14)

0

where q - -i( wc z A , z =120 Q, and

A - normalized surface impedance at grazing incidence

The same type of asymptotic solution described in Equations (3)

through (7) are again used. The equation corresponding to (13) for the

exterior ray orbits over an impedance surface is

ko  S • j1 = 27 (n, - -- M i)  (15) J

r i - 1,2,3 ...

The interpretation of Equation (15) is the same as (13) where now the

phase i is given by

1 -
arg A+L (16)

where A is the normalized outward pointing surface impedance intro-

duced in Equation (14). Thus

arg (r) - Im(In (r))

and the paths r are yet to be determined. The caustic in the exterior

problem, as shown in Figure 3, separates the dark from the light side.

Tie dark side is closer to the surface S; outside the caustic the

10
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energy radiates away from the surface. The caustic or turning point

j then separates the evanescent and radiating regions. The fact that

the phase changes 1/2 radians at the caustic can be seen from

Equation (16) if the appropriate normalized impedance A - i is used.

As described by Howard Lii, this caustic phase advance is

central to the bending loss associated with open waveguides. In

addition to the bending losses and the ohmic losses in the scatter-

ing object, there is a third loss mechanism in exterior problems.

This is the ray spreading caused by reflection off the convex

surface S . One way to account for this ray tube divergence is too

place the amplitude function A(x) into the exponent and then replace

IS in Equation (15) by

7S - i/k V in A (17)0

The dependence of the amplitude function A near a surface such as S0

has been carried out by Kouyoumjian and Pathak [12,13].

APPLICATION TO A SPHERE

The exterior resonances of a sphere have been thoroughly inves-

tigated beginning with Thompson's 1884 treatment [14]. A more modern

discussion can be found in Stratton's book [15]. Numerical results have

been presented by Martinez et al [16). In these references it is shown

that the complex resonances for the sphere are associated with the com-

plex zeros P m of the spherical outward radiating Hankel function

h(In . In the case of perfect conductivity the mode equations aren

H Type Modes (Horizontal Polarization, q -)

- h(1 ) 0 (18)

11
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E Type Modes (Vertical Polarization, q 0).

(phO-n (p)), - 0 (19)

The poles s in the Lapace s domain which corresponds to the complex

resonant frequencies are given by

a U = -i- M = 1,2,3 ... (20)

where a is the sphere radius.

Because the spherical Hankel function of order n is a polynomial of

order n multiplied by an exponential function, the natural frequencies

for a sphere are particularly easy to compute.

The geometric theory as represented by the generalized Bohr-

Sommerfeld-Wilson condition (15) should asymptotically produce the

complex frequencies as defined by Equations (18), (19) and (20).

For the general case of an arbitrarily shaped convex scattering

body, a major difficulty in applying Equation (15) is in the determination

of the fundamental paths ri* It is anticipated that the required geo-

desic paths will be best computed using local geodesic coordinates on

the surface of S as defined, for example by Struik [17] or O'Neill [18].o

These local solutions then are integrated over the global geodesic paths

to determine the resonant frequencies.

For a sphere, the local solution can be trivially translated

into the global solution. A coordinate independent general way to

approach the problem is to compute the ray divergence contribution to

the loss term in Equation (17) through the geometrical formulation of

reflection from curved surfaces as developed for example by

Kouyoumjian and Pathak [12].

12



1.1

Keller has carried out this approach for asymptotic solutions

to the Schrodinger equation [2). He found that the amplitude contribu-

tion to the phase (as determined by Equation (17) here, for example)

gives rise to half-integer quantum numbers.

At this stage of progress in our work, a heuristic approach

to the geometric computation of the exterior resonances of a metallic

sphere is given.

The convex scattering surface, as shown in Figure 3, can be

defined mathematically by an equation of the form

f(x,y,z) - 0 (21)

In a neighborhood of the point (0,0,0) it is possible to represent f

in the form

f - z + 1/2 (axz + 2Bxy + yy) (22)

where the convexity of the surface and fixing the orientation of-

positive z to the convex side of f requires that

> 0, a > 0, ay - $2 > 0 (23)

The coefficients a, a, y are given by

a2z 3 12Z -2

2 x W y 0 ;x-y - y 0 y2 x -y - 0 (24)

so that representation (22) is just a McLaurin series through second

order terms about the point x - y - 0 of the surface (21). At the

q,
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point (0,0,0) on the surface the normal curvature in the x direction

is a 1/a and the analogous y quantity is b - 1/B.

To model a convex body with two principal radii of curvature

we choose the system defined by the arc length formula

ds2 . 2 d82 + b2 do2 + dO2

Local Surface Patch
with Curvatures (P, b)

•P

re

Figure 5. Coordinate System

The Laplacian operator is determined to be

7 b ~ (P (04~ b- 21 (p (25)

Consider ray solutions propagating in the direction of increasing e.
We transform out the transverse 0 dependence. Thus, let

'P(p,9,) - (p,e,t) eikt dt (26)

The wave equation

('72 + kz )  -0

becomes upon using (25) and (26),j 14
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S _
2) (

P (p (27)

Assume a product solution of the form

iP (p,e,t) - R(p) e.L1 e  (28)

where a is the local radius of curvature in the ray direction, and y is

a normalized propagation constant to be determined. The ordinary dif-

ferential equation for R(P) is thus

d I( dlR + ((kp) 2 k- t2 z Z( 2 P 0 (29)
dP dP~ b y1 k))-)

Let x - kp (1 -(b ))/2 , t) V yka , u(x) - R (P)

Then, the equation for u(x) is

x (x u'(x))' + (x1 - V2) u(x) - 0 (30)

In equation (30), make the change of variable

y - in ' a/ xa x -x1 a ct

f(y) - u(x) I a (a - (p/b)-)a 1 2

The resulting differential equation for f(y) is

d2fly) + Q2n 2 (y) f(y) _ 0 (31)

dy
2

where
nZ(y) a a2 e2y - y2  ka

The radial Bohr-Sommerfeld resonance condition for equation (31), which

corresponds to a ray trip up and back between S0 and the caustic in

Figure 3, becomes

2 a fo n(y)dy - - r/2 (32)

15
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Here we have chosen mi - 1 in Equation (15).and y0 is the turning

I point of Equation (31), i.e., n(yo) - 0. Also in Equation (32),

1 as defined by Equation (16) is zero. This is the case for

I vertical polarized E field on a perfectly conducting sphere. In

j Equation (32), we make the change of variable

-(yo-y) a

T o and define z - a

Then Equation (32) becomes
i 1 1 ) /2

2l 1 - dr - -7/2 (33)
z

Olver has made use of this integral extensively in his work on special

functions [19,20]. He defines the implicit relationship z( ) as

2/3 3/2 
z  I - t2) 1 /22/ - 4 t dt (34)

In our application is given and z is to be computed. This is a complex

valued transcendental equation in which it is quite useful to introduce

an intermediate change of variable

z 0 sech a (35)

since then it can be shown that

2/3 ' 3/2 - tanhu (36)

Details can be found in Appendix A.

Equation (33) then is the radial resonance condition. For the

I sphere, the angular resonance condition from Equation (15) and our

I16



assumed angular dependence as given in relation (28) is

2rYa - 2Trn n - 1,2,3, Q - k a (37)0

since the ray orbits are obviously great circles. (All great circles

on a sphere are geodesics.) Combining Equations (33), (34) and (37)

yields the mode equation

41n 3/2 - r/2 (mod 2 ). (38)
3

This is a phase requirement so that W(z) as defined by Equation (38)

is multivalued. Thus, from Equation (38) it follows

2/ 3/2 i7r
2/3 3/ a - T (4m - 1) , m - 1,2,3... (39)

4n

On the other hand, the uniform asymptotic formula for the roots of the

spherical Hankel function h() (z) are given by (211
n

n2/3 ) (znm) ei 2T / 3 - am  (40)

th
where am is the m root of the Airy function Ai [21]. The zeros of

A are along the negative real axis. The lead term of the asymptotic

expansion for the zeros of Ai is (see (21], p 450)

a a (0  - (37r (4m - 1)/8) 2 /3  m - 1,2,3 (41)m m (41)

If expression (41) is substituted into (40), the result is identical to

the mode equation (39). Thus, ve have shown that the modified Bohr-

Sommerfeld-Wilson quantum conditions when applied to the exterior

resonances of a sphere result in a mode equation which is identical to

17
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the uniform asymptotic formulas for the complex zeros of the Hankel

functions as given by Abramowitz and Stegun [21] or Olver [19].

To give an indication of the accuracy of the method, a table

of the exact (Z nk) and asymptotic (Znk as computed using Equation (39)

and results of Appendix A) complex zeros of h ()(z) is given.

Table 2. Exterior Resonance Comparison of Exact (Znk) and

Asymptotic (Zfnk) Zeros of h4( (z).
k ~

(n = 4) nk Znk

1 2.6574, -2.1038 2.6539, -2.1035

2 0.8672, -2.8962 0.8628, -2.8950

3 -0.8672, -2.8962 -0.8741, -2.8927

4 -2.6574, -2.1038 -2.6740, -2.0892

Again, as in the interior resonance comparison of Table 1,

the geometric results are surprisingly accurate.

Discussions and Recommendations

In conclusion, we have shown that a modification of the Bohr-

Sommerfeld-Wilson quantum condition can predict exterior resonance

frequencies. The method is geometric and hence applies to non-

separable geometrics. It has the potential to order the pole trajec-

tory plots of SEM into radial and angular families.

It is important to realize that the poles we have determined

do not correspond to creeping waves. Thus, if snk is the position

of the pole in the s plane, then far from the surface of the sphere

the modes have the dependence

18
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I

Snk (t - r/c) Jc Z* ,)(42)e ' nk s = a n Re(Snk )< 0

Iwhere we are using the traditional electrical engineering convention
ejt and s4- jw, and the complex conjugate Z* appearing in

formula (42) is used to agree with this convention. The exponential

Iform of (42) has the well known "exponential catastrophe" behavior as

r [ t22). The wave amplitude increases in the radial direction. This,

as is well known, is accounted for in setting up the proper excitation

conditions [7]. Creeping waves on the other hand obey radiation

conditions at infinity.

An interesting question that arises is "how do the pole plots

of snk move in the s plane when the object geometry changes con-

tinuously?" The interpretation of the resonance conditions (13) and

(15) in terms of the residue theorem tells us that the pole positions

will move little and their number will be conserved unless an addi-

tional singularity of the field is created by the geometry deformation.

A deeper understanding of this analytic function method should be pur-

sued. The significance of topological invariants of ("compact

orientable geometric") surfaces such as the Euler-Poincarg character-

istic 181 also needs to be investigated.

An immediate logical extension of this theory is to properly

define the independent closed paths 7i for more general surfaces.

The theory should then be checked against the known results for the

I prolate and oblate spheroid.

19
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APPENDIX A

The solution to the transcendental equation

2/3 3~ - (t) dt (A.1)

is now given. Olver has determined that "where branches are defined

to take their principal values when zs(O,l) and ;E(O,-') and are

continuous elsewhere" (p. 421 of [19)).

The integral is doable:

2/3 3/2 . in (IL+5fi -) - Vlf-z (A.2)

To aid in the solution of this implicit function Ci.e., given

Sfind z) let us make the change of variable

z -sech a then 2/3~ = / a -tanh a (A.3)

Thus, given w where

w -a - tanh a

a is determined.

Let W-u+iv, a OL+ia , tanha -T+iI

where T - sinh2ct/cosh(2t) + cos(21a))

P. - sin 2$/(cosh(2ax) + cos(20)

cosht sinS i sinh a cosa
Notice then z snz i'

j :. so that
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sinh2t (a)
cosh2ct + 'oes2$

(A.4)

V siri2$ b
cosh2a + cos2S b

Thus, in (A.4) given u and v, we must solve for (ct,8) simultaneously.

cosh2t + cos2$ asinU I cosh2L + cos2B i2

Theref ore, a inh2OL C- sin 28 (A.5)
8-v

Procedure:

Given (u,v) take approximate 8value and solve for correspond-

ing a in (A.5). Then, take this (ct,a) pair and substitute them into

(A.4a). Vary $ with fixed a until (A.4a) is satisfied. Take this new

value of a and substitute it into (A.5) to obtain an updated value of

a. Stop iteration when z n -1 < where S is preset tolerance.
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